Direkt zum Inhalt springen

Servoverstärker SD4S

Die Produktvariante SD4S, bei der das S für Stand-Alone steht, macht den Anfang in der neuen Serie SD4x. Die SD4S-Varianten treten die Nachfolge der erfolgreichen SD2S-Varianten an und sind für den stationären Einsatz in Schaltschränken von Werkzeugmaschinen, Turbokompressoren/-verdichtern konzipiert. Ob Linearmotor, rotativer Servomotor, hochpoliger Torquemotor oder synchrone/asynchrone Werkzeugspindel mit oder ohne Sensor, all diese Antriebsarten beherrscht der SD4S.
Zur Anbindung an die übergeordnete Steuerung werden analoge Sollwertsignale (+/-10 V), CANopen, EtherCAT (CoE)-Signale /-Protokolle verarbeitet.

Highlights

  • PWM-Frequenzen bis zu 32 kHz

    Funktion:
    Der SD4S stellt PWM Frequenzen bis 32 kHz und Kommutierungsfrequenzen bis 64 kHz zur Verfügung.

    Vorteil:
    Höhere Drehfeldfrequenzen bis zu 6.000 Hz und geringere harmonische Frequenzanteile.

    Nutzen:
    Realisierung von höherpoligen Motordesigns und geringere Motorverluste.

  • Motor Analyzer

    Funktion:
    Simulation der Betriebspunkte und FFT-Analyse mit THDi- und THDu-Berechnung.

    Vorteil:
    Analyse der Systemperformance bereits zum Entwicklungsbeginn.

    Nutzen:
    Reduzierung Entwicklungszeit, -kosten und -risiko sowie Optimierung des Gesamtsystems.

  • Galvanisch getrennter Thermokontakteingang

    Funktion:
    Der Eingang für den Thermokontakt ist galvanisch von der Logik- und Hauptspannung getrennt.

    Vorteil:
    Sicherer Betrieb auch im Fall eines Isolationsproblems des Thermokontakts im Motor.

    Nutzen:
    Schutz des Umrichters im Fehlerfall und höhere Systemverfügbarkeit.

Bessere Performance und neue Regelungsfunktionen

Gegenüber den SD2S-Varianten hat sich die Prozessorleistung der SD4S-Varianten deutlich verbessert: Der neuen 32 Bit-Prozessor ist bis zu fünfmal schneller und erlaubt somit eine höhere Auflösung, genauere Berechnungen und auch komplexe Aufgaben schneller zu bearbeiten. Für den Kunden bedeutet das eine eklatante Steigerung der Performance. Höhere Schaltfrequenzen und eine verbesserte Regelgüte bei nochmals gesteigerten Drehzahlen bewirken Verbesserungen im Gesamtprozess.

SD4S-Geräte können dank eines integrierten Lagereglers eigenständige hochgenaue Positionierungen durchführen. Unterstützt werden nun auch PWM-Schaltfrequenzen von 24 und 32 kHz. Für eine noch feinere Modulierung des sinusförmigen Signals ist eine Kommutierungswinkel-Steuerung für 32, 48 und 64 kHz integriert. Dadurch ergibt sich ein nahezu optimaler Sinus, es treten so gut wie keine harmonischen Ströme mehr auf. Durch die PWM verursachte Verlustleistung im Motor kann somit sehr deutlich minimiert werden.

Zusätzlich wurde die zur Verfügung stehende Prozessorperformance für neue Regelungsfunktionen genutzt. Mit den SD4S-Geräteverianten ist es nun möglich, Synchronmotoren mit "vergrabenen" Magneten, auch Interior Permanent Magnet Motor (IPM) genannt, optimal zu betreiben. Das bei diesen Motoren zusätzlich zur Verfügung stehende Reluktanzmoment wird dabei für jeden Arbeitspunkt in Echtzeit optimiert - Stand der Technik bei anderen Systemen ist eine statische Optimierung auf einen festen Arbeitspunkt.

SD4S - Immer die perfekte Antriebsfunktion für Ihre Anwendung

PSM: (Permanent erregter Synchronmotor)
IPM (Interior Synchronous Permanent Magnet Motor)
ASYN: (Asynchronmotor)
SVC: (Sensorlose Vektorregelung)
Servo: (Servomode mit Geberrückführung)
U/f-PWM: (Auf Pulsweitenmodulation aufbauende sensorlose U/f Kennliniensteuerung)
HS-Block: (Blockansteuerung mit Hall-Elementen)

Die Schnittstellen des Servoverstärkers SD4S

  1. Netzspannung / Externer Ballastwiderstand
  2. 24 VDC Logikspannungsversorgung
  3. Integrierte Sicherheit "STO": Anlaufsperre zum Erreichen der Kategorie 4/PL e gemäß EN 13849 1:2015 und EN 61508:2010 SIL3
  4. RS232/485, CAN, CANopen, Modbus RTU
  5. Ethernet 100 MBit, Parametrierung, Diagnose und Betrieb, Modbus TCP
  6. Digitale Ein- und Ausgänge
  7. Digitales Motorgeber-Interface (Biss-C, EnDat 2.2, TTL, Hallgeber)
  8. Optional: EtherCAT, (Powerlink und PROFINET in Vorbereitung)
  9. Galvanisch getrennter Thermokontakt
  10. Motoranschluss
  11. Optional: Analoges Motorgeber-Interface (Resolver, SinCos 1 Vss)

Antriebsfunktionen und Sicherheitstechnik

SVC
U/f PWM
HS-Block
Servo
LI
STO

Simulation, Inbetriebnahme, Monitoring: drivemaster4

Die Parametrier-, Simulations- und Diagnosesoftware drivemaster4 ermöglicht dem Anwender eine einfache und schnelle Inbetriebnahme von Antriebssystemen. Durch das integrierte Simulationstool Motor Analyzer kann der Anwender bereits zum Zeitpunkt der Systemauslegung nachweisen, dass die gewünschten Systemeigenschaften in Bezug auf Arbeitspunkte und Oberschwingungen realisierbar sind. Basis dafür sind passende elektrische Motordaten.

Simulation:

  • Elektrische Betriebspunkte
  • Einfluss der PWM-Frequenz/Umrichter Topologie
  • FFT-Analyse inklusive THDi-/THDu-Berechnung
  • Export der Simulationsdaten

Inbetriebnahme:

  • Parametrierung der Motordaten/Schnittstellen
  • Optimierung mittels Oszilloskop
  • Inbetriebnahme-Tool

Monitoring:

  • Datenlogger
  • Echtzeituhr
  • Fehlerspeicher
  • Betriebsstundenzähler

Technische Spezifikationen Servoverstärker SD4S

Spannungsklasse 230 VAC
Eingangsspannungsberich 99..253 VAC

Gerätetyp Netzspannung Ausgangsleistung [kW] Ausgangsscheinleistung [kVA] Ausgangsstrom [A] Ausgangsspitzenstrom [A] HxBxT (mm) Gewicht Kühlung
0SD4SB1D1Cxxxx 1 x 230 VAC 0,8 kW 1,6 kVA@16 kHz 4 A@16 kHz 14 A 247 x 43 x 186 1,23 kg Luft
0SD4SC1E1Cxxxx 1 x 230 VAC 1,6 kW 3,2 kVA@16 kHz 8 A@16 kHz 28 A 247 x 63 x 186 2,15 kg Luft
0SD4SD1E1Cxxxx 1 x 230 VAC 2,4 kW 6,4 kVA@16 kHz 16 A@16 kHz 28 A 247 x 83 x 186 2,4 kg Luft

 

Spannungsklasse 400 VAC
Eingangsspannungsbereich 180..528 VAC

Gerätetyp Netzspannung Ausgangsleistung [kW] Ausgangsscheinleistung [kVA] Ausgangsstrom [A] Ausgangsspitzenstrom [A] H x B x T (mm) Gewicht Kühlung
0SD4SD1B1Fxxxx 3 x 400 VAC 4 kW 5,5 kVA @16 kHz 8 A @16 kHz 20 A 247 x 83 x 186 2,46 kg Luft
0SD4SD1F1Fxxxx 3 x 400 VAC 6 kW 8,3 kVA @16 kHz 12 A @16 kHz 24 A 247 x 83 x 186 2,46 kg Luft
0SD4SE1I1Fxxxx  3 x 400 VAC 10 kW 13,9 kVA @16 kHz 20 A @16 kHz 56 A folgt 4,8 kg Luft
0SD4SF1I1Fxxxx  3 x 400 VAC 15 kW 20,8 kVA @16 kHz 30 A @16 kHz 56 A folgt 5,6 kg Luft
0SD4SH1M1Fxxxx * 3 x 400 VAC 24 kW 33 kVA @16 kHz 48 A @16 kHz 96 A folgt folgt Luft
0SD4SH1N1Fxxxx * 3 x400 VAC 32 kW 44 kVA @16 kHz 64 A @16k Hz 120 A folgt folgt Luft
0SD4SK1N1Fxxxx * 3 x 400 VAC 48 kW 66 kVA @16 kHz 96 A @16 kHz 120 A folgt folgt Luft


* in Umsetzung 

Anwendungen

  • Bei Schraubanwendungen ist Präzision unabdingbar: Wenn die Vorgabe lautet, eine Schraube exakt mit einem definierten Drehmoment anzuziehen, dann muss der Servoverstärker das auch so umsetzen. 

News

Servoverstärker SD4S

SIEB & MEYER AG steigert Jahresumsatz 2024 um 55 Prozent

Die SIEB & MEYER AG blickt auf ein äußerst erfolgreiches Geschäftsjahr 2024 zurück. Trotz der schwierigen weltwirtschaftlichen Rahmenbedingungen im…

Mehr erfahren →
Servoverstärker SD4S

Hocheffizienter Betrieb von High-Speed-Anwendungen

Die Drive Controller der SD4S-Serie von SIEB & MEYER bewähren sich überall dort, wo der hocheffiziente und verlustfreie Betrieb von High-Speed-Motoren…

Mehr erfahren →
Mit dem neuen SpindleServiceTool (SST) von SIEB & MEYER können Test- und Einlaufprozesse von Bearbeitungsspindeln einfach automatisiert werden.
Servoverstärker SD4S

Abnahme- und Einlauftests effizient automatisieren

Mit dem neuen SpindleServiceTool (SST) von SIEB & MEYER können Spindelhersteller- und -reparateure ihr Qualitätsmanagement optimieren und dabei Zeit…

Mehr erfahren →

Nehmen Sie mit uns Kontakt auf

Servoverstärker SD4S

Die Produktvariante SD4S, bei der das S für Stand-Alone steht, macht den Anfang in der neuen Serie SD4x. Die SD4S-Varianten treten die Nachfolge der erfolgreichen SD2S-Varianten an und sind für den stationären Einsatz in Schaltschränken von Werkzeugmaschinen, Turbokompressoren/-verdichtern konzipiert. Ob Linearmotor, rotativer Servomotor, hochpoliger Torquemotor oder synchrone/asynchrone Werkzeugspindel mit oder ohne Sensor, all diese Antriebsarten beherrscht der SD4S.
Zur Anbindung an die übergeordnete Steuerung werden analoge Sollwertsignale (+/-10 V), CANopen, EtherCAT (CoE)-Signale /-Protokolle verarbeitet.

Highlights

PWM-Frequenzen bis zu 32 kHz

  • Funktion: Der SD4S stellt PWM Frequenzen bis 32 kHz und Kommutierungsfrequenzen bis 64 kHz zur Verfügung.
     
  • Vorteil: Höhere Drehfeldfrequenzen bis zu 6.000 Hz und geringere harmonische Frequenzanteile.
     
  • Nutzen: Realisierung von höherpoligen Motordesigns und geringere Motorverluste.

Motor Analyzer

  • Funktion: Simulation der Betriebspunkte und FFT-Analyse mit THDi- und THDu-Berechnung.
     
  • Vorteil: Analyse der Systemperformance bereits zum Entwicklungsbeginn.
     
  • Nutzen: Reduzierung Entwicklungszeit, -kosten und -risiko sowie Optimierung des Gesamtsystems.

Galvanisch getrennter Thermokontakteingang

  • Funktion: Der Eingang für den Thermokontakt ist galvanisch von der Logik- und Hauptspannung getrennt.
     
  • Vorteil: Sicherer Betrieb auch im Fall eines Isolationsproblems des Thermokontakts im Motor.
     
  • Nutzen: Schutz des Umrichters im Fehlerfall und höhere Systemverfügbarkeit.

Bessere Performance und neue Regelungsfunktionen

Gegenüber den SD2S-Varianten hat sich die Prozessorleistung der SD4S-Varianten deutlich verbessert: Der neuen 32 Bit-Prozessor ist bis zu fünfmal schneller und erlaubt somit eine höhere Auflösung, genauere Berechnungen und auch komplexe Aufgaben schneller zu bearbeiten. Für den Kunden bedeutet das eine eklatante Steigerung der Performance. Höhere Schaltfrequenzen und eine verbesserte Regelgüte bei nochmals gesteigerten Drehzahlen bewirken Verbesserungen im Gesamtprozess.

SD4S-Geräte können dank eines integrierten Lagereglers eigenständige hochgenaue Positionierungen durchführen. Unterstützt werden nun auch PWM-Schaltfrequenzen von 24 und 32 kHz. Für eine noch feinere Modulierung des sinusförmigen Signals ist eine Kommutierungswinkel-Steuerung für 32, 48 und 64 kHz integriert. Dadurch ergibt sich ein nahezu optimaler Sinus, es treten so gut wie keine harmonischen Ströme mehr auf. Durch die PWM verursachte Verlustleistung im Motor kann somit sehr deutlich minimiert werden.

Zusätzlich wurde die zur Verfügung stehende Prozessorperformance für neue Regelungsfunktionen genutzt. Mit den SD4S-Geräteverianten ist es nun möglich, Synchronmotoren mit "vergrabenen" Magneten, auch Interior Permanent Magnet Motor (IPM) genannt, optimal zu betreiben. Das bei diesen Motoren zusätzlich zur Verfügung stehende Reluktanzmoment wird dabei für jeden Arbeitspunkt in Echtzeit optimiert - Stand der Technik bei anderen Systemen ist eine statische Optimierung auf einen festen Arbeitspunkt.

SD4S - immer die perfekte Antriebsfunktion für Ihre Anwendung

PSM: (Permanent erregter Synchronmotor)
IPM (Interior Synchronous Permanent Magnet Motor)
ASYN: (Asynchronmotor)
SVC: (Sensorlose Vektorregelung)
Servo: (Servomode mit Geberrückführung)
U/f-PWM: (Auf Pulsweitenmodulation aufbauende sensorlose U/f Kennliniensteuerung)
HS-Block: (Blockansteuerung mit Hall-Elementen)

Die Schnittstellen des Servoverstärkers SD4S

  1. Netzspannung / Externer Ballastwiderstand
  2. 24 VDC Logikspannungsversorgung
  3. Integrierte Sicherheit "STO": Anlaufsperre zum Erreichen der Kategorie 4/PL e gemäß EN 13849 1:2015 und EN 61508:2010 SIL3
  4. RS232/485, CAN, CANopen, Modbus RTU
  5. Ethernet 100 MBit, Parametrierung, Diagnose und Betrieb, Modbus TCP
  6. Digitale Ein- und Ausgänge
  7. Digitales Motorgeber-Interface (Biss-C, EnDat 2.2, TTL, Hallgeber)
  8. Optional: EtherCAT, (Powerlink und PROFINET in Vorbereitung)
  9. Galvanisch getrennter Thermokontakt
  10. Motoranschluss
  11. Optional: Analoges Motorgeber-Interface (Resolver, SinCos 1 Vss)

Antriebsfunktionen und Sicherheitstechnik

SVC
U/f PWM
HS-Block
Servo
LI
STO

Simulation, Inbetriebnahme, Monitoring: drivemaster4

Die Parametrier-, Simulations- und Diagnosesoftware drivemaster4 ermöglicht dem Anwender eine einfache und schnelle Inbetriebnahme von Antriebssystemen. Durch das integrierte Simulationstool Motor Analyzer kann der Anwender bereits zum Zeitpunkt der Systemauslegung nachweisen, dass die gewünschten Systemeigenschaften in Bezug auf Arbeitspunkte und Oberschwingungen realisierbar sind. Basis dafür sind passende elektrische Motordaten.

Simulation:

• Elektrische Betriebspunkte
• Einfluss der PWM-Frequenz/Umrichter Topologie
• FFT-Analyse inklusive THDi-/THDu-Berechnung
• Export der Simulationsdaten
 

Inbetriebnahme:

• Parametrierung der Motordaten/Schnittstellen
• Optimierung mittels Oszilloskop
• Inbetriebnahme-Tool

Monitoring:

• Datenlogger
• Echtzeituhr
• Fehlerspeicher
• Betriebsstundenzähler

Technische Spezifikationen Servoverstärker SD4S

Spannungsklasse 230 VAC
Eingangsspannungsberich 99..253 VAC

Gerätetyp Netzspannung Ausgangsleistung [kW] Ausgangsscheinleistung [kVA] Ausgangsstrom [A] Ausgangsspitzenstrom [A] HxBxT (mm) Gewicht Kühlung
0SD4SB1D1Cxxxx 1 x 230 VAC 0,8 kW 1,6 kVA@16 kHz 4 A@16 kHz 14 A 247 x 43 x 186 1,23 kg Luft
0SD4SC1E1Cxxxx 1 x 230 VAC 1,6 kW 3,2 kVA@16 kHz 8 A@16 kHz 28 A 247 x 63 x 186 2,15 kg Luft
0SD4SD1E1Cxxxx 1 x 230 VAC 2,4 kW 6,4 kVA@16 kHz 16 A@16 kHz 28 A 247 x 83 x 186 2,4 kg Luft

 

Spannungsklasse 400 VAC
Eingangsspannungsbereich 180..528 VAC

Gerätetyp Netzspannung Ausgangsleistung [kW] Ausgangsscheinleistung [kVA] Ausgangsstrom [A] Ausgangsspitzenstrom [A] H x B x T (mm) Gewicht Kühlung
0SD4SD1B1Fxxxx 3 x 400 VAC 4 kW 5,5 kVA @16 kHz 8 A @16 kHz 20 A 247 x 83 x 186 2,46 kg Luft
0SD4SD1F1Fxxxx 3 x 400 VAC 6 kW 8,3 kVA @16 kHz 12 A @16 kHz 24 A 247 x 83 x 186 2,46 kg Luft
0SD4SE1I1Fxxxx  3 x 400 VAC 10 kW 13,9 kVA @16 kHz 20 A @16 kHz 56 A folgt 4,8 kg Luft
0SD4SF1I1Fxxxx  3 x 400 VAC 15 kW 20,8 kVA @16 kHz 30 A @16 kHz 56 A folgt 5,6 kg Luft
0SD4SH1M1Fxxxx * 3 x 400 VAC 24 kW 33 kVA @16 kHz 48 A @16 kHz 96 A folgt folgt Luft
0SD4SH1N1Fxxxx * 3 x400 VAC 32 kW 44 kVA @16 kHz 64 A @16k Hz 120 A folgt folgt Luft
0SD4SK1N1Fxxxx * 3 x 400 VAC 48 kW 66 kVA @16 kHz 96 A @16 kHz 120 A folgt folgt Luft


* in Umsetzung 

Anwendungen

  • Bei Schraubanwendungen ist Präzision unabdingbar: Wenn die Vorgabe lautet, eine Schraube exakt mit einem definierten Drehmoment anzuziehen, dann muss der Servoverstärker das auch so umsetzen. 

Über SIEB & MEYER

SIEB & MEYER AG - Antriebs- und Steuerungslösungen der neusten Generation


SIEB & MEYER wurde 1962 gegründet und ist ein erfolgreiches Unternehmen auf dem Gebiet der Industrieelektronik. Mit heute rund 260 Mitarbeitenden weltweit, entwickeln und fertigen wir Steuerungstechnik und Antriebselektronik. Zu unseren Kerntechnologien gehören Steuerungen für den Maschinenbau und die Automatisierungstechnik, Servoverstärker für unterschiedlichste Antriebe sowie Frequenzumrichter für Hochgeschwindigkeitsmotoren und -generatoren.

Kontakt

SIEB & MEYER AG
Auf dem Schmaarkamp 21
D-21339 Lüneburg
Tel.: +49 4131 203 0
Fax: +49 4131-203 2000

Alle Ansprechpartner im Vertrieb finden Sie unter: www.sieb-meyer.de/kontakt/vertrieb

Alle Vertretungen und Partner finden Sie unter: www.sieb-meyer.de/kontakt/vertretungen-partner